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Proportions and Architectural Motives in the 
Design of the Eighteenth-Century Oboe 1 

CECIL ADKINS 

"BEAUTY," wrote the architect Andrea Palladio in 1570, "will result 
from the form and correspondence of the whole, with respect to 

the several parts, of the parts with regard to each other, and of these 
again to the whole; that the structure may appear an entire and com
plete body. "2 

In search of beauty, eighteenth-century oboe makers incorporated 
venerable proportional systems and many familiar architectural motives 
and decorative shapes into the designs of their instruments. At the be
ginning of the century oboe shapes leaned heavily toward the imposing 
decorative style typical of the late Baroque (fig. 1). Later in the century 
they frequently exhibited elements of the lightness of the Rococo (fig. 
2), and toward the end of the century, a number of the formal elements 
of classicism ( fig. 3). The appearance of the oboe in each of these eras 
reflects more than just an interest in functionality. Kevin Coates suggests 
that instrumental shapes are the result of an alliance of three aspects of 
design: acoustic, ergonomic, and aesthetic.'.> On the oboe, acoustic con
cerns determine the length and volume of the air column and the place
ment of the fingerholes, while ergonomics are concerned with the 
comfortable placement of the holes and the weight of the instrument. 
Aesthetic considerations become part of the equation when these func
tional components are retained as traditional features and are harmo
nized into an artistic whole through the use of proportions and familiar 
architectural features. 

Over the last fifty years, beginning with the 1949 publication of 
Rudolph Wittkower's Architectural Principles in the Age of Humanism, 4 and 

I. An earlier version of this article was presented as a paper at the Twenty-Fifth 
Annual Meeting of the American Musical Instrument Society, held at America's Shrine 
to Music Museum in Vermillion, South Dakota, May 15-19, I 996. 

2. Andrea Palladio, I quattri libri dell' architettura (Venice, 1570), quoted from Isaac 
Ware's translation (London, 1738) entitled Four Boohs of Architecture (facs. reprint New 
York: Dover, 1965), I, I. 

3. Kevin Coates, Geometry, Proportion and the Art of Lutherie (Oxford: Clarendon 
Press, 1985), 164-65. 

4. Rudolph Wittkower, Architectural Principles in the Age of Humanism (New York: 
Random House, 1949, rev. ed. 1962). 
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FIGURE l. Oboe decorated in a heavy 
Baroque style. Dupuis, Paris, c. 1690 
(Berlin, Musikinstrumenten-Museum 
2933). 

FIGURE 2. Mid-eighteenth-century 
French oboe with simple decorations. 
Thomas Lot II (Oxford, Bate Collec
tion 24). 
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FIGURE 3. Oboes exhibiting Classical elements. William Milhouse, c. 1800-
c. 1820 (Oxford,Jeremy Montagu 188, Bate Collection 203, Bate Collection 27) . 
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more recently through Kevin Coates's Geometry, Proportion and the Art of 
Lutherie, we have been made acutely aware of the pervasiveness of classi
cal learning and the extent to which it influenced architecture and the 
design of instruments in the sixteenth through the eighteenth centuries. 
But while there is ample evidence of the use of geometric and propor
tional systems in architecture, no written records concerning the use of 
these systems in the design of instruments are known to exist. Indeed, 
the proportional nature of instrument design is not even apparent to the 
undiscerning or casual observer, giving rise to questions regarding its va
lidity and usefulness. 

In the absence of written records providing definitive answers, Coates 
offers various speculations based on practical, aesthetic, and metaphysi
cal considerations to explain the features observable on surviving instru
ments. It appears that th1s lack of written records simply stems from the 
crafts tradition perpetuated by the guilds, which allowed such informa
tion to be transmitted only in the utmost secrecy from master to pupil. '' 
In a more practical sense this meant that a knowledge of proportions was 
transmitted at the workbench as part of an overall understanding of the 
principles of design rather than as a set of reproducible instructions. 
Further, the understanding and use of the proportional system lent a 
consistency to the design process, even if its results were not always ap
parent. To the maker-designer, whose work also had to reflect the shift
ing elements of eighteenth-century style, these components gave assur
ance and confidence that the parts of his work would lead to a 
correspondence with the whole-and thence to the creation of beauty. 

Proportions 

In order to understand their role in the design and construction of 
oboes, it is necessary to establish a basic understanding of what the dif
ferent proportions were and how they were applied. Renaissance archi
tects, following traditions established by the Greeks, propounded the use 
of proportions in terms of three means: arithmetic, harmonic, and geo-

5. Coates, 169, points out that Renaissance instrument makers were regularly mem
bers of merchants' or artists' guilds, rather than specific luthiers' guilds, of which he 
claims none existed in the sixteenth century. Luthiers' guilds were common during the 
eighteenth century, however, in Fi-ance and Germany, where they exerted rigid control 
on all aspects of the trade, including apprenticeships, licensing, production, and sales. 
They were abolished in France beginning about 1789 and in Germany about 1810. 
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metric. They accepted the first two means on the basis of the consonant 
musical intervals contained in their ratios, but rejected the third because 
it created a dissonance. Their interest was not in translating music into 
architecture, but in using the consonant intervals as audible proof of 
the beauty of ratios constructed on the small whole numbers, 1:2:3:4. 
The following brief explanation will help to clarify their thought in this 
regard. 

The arithmetic mean is a simple average between two numbers, deter
mined as being equidistant from the extremes. For example, the arith
metic mean between 6 and 12 is 9, giving the ratios 6:9:12. Its pairs of 
numbers produce the consonant intervals ofa perfect fifth and a perfect 
fourth, which together equal an octave.6 

A harmonic mean results when the third integer exceeds the second by 
the same fraction as the second exceeds the first; in other words, the har
monic mean exceeds and is exceeded by equal parts of its extremes. For 
example, 8 is the harmonic mean of 6 and 12, because it exceeds 6 by 
one-third of 6 and 12 exceeds 8 by one-third of 12. The ratios of the har
monic mean therefore produce the same intervals as those of the arith
metic mean, but using a different division of the octave, in which the 
fifth is now above rather than below the fourth. 7 

The geometric mean lies between the extremes so that it is to the first 
term as the third is to the second. Thus, 6 is the geometric mean of 4 
and 9, because 9 is half again larger than 6,just as 6 is half again larger 
than 4.8 Either of these ratios produces the consonant interval of a per
fect fifth (3:2); when added together, however, they equal a ninth (9:4), 
a dissonant interval. 

The irrational golden mean, often represented by the symbol 0, has 
a ratio of approximately 1:0.618, which can be determined by the for
mula: 0 = 1

/ 2 (VS - 1). Another way of determining the golden mean is 
to establish a progression of numbers in which each number is the sum 
of the preceding two. This results in a summation series such as 1, 1, 2, 3, 
5, 8, 13, 21, 34, 55, and so on, which is known as a Fibonacci series, after 

6. These intervals are obtained by reducing 6:9:12 to simpler ratios representative 
of musical intervals. Thus, 12:6 equals 2:1, or an octave; 9:6 becomes 3:2, which is a 
perfect fifth; and 12:9 embodies 4:3, a perfect fourth. 

7. In musical terms 12:6 is again an octave, 12:8 (3:2) is a perfect fifth, and 8:6 
( 4:3) is a perfect fourth. 

8. This mean can be determined between two extremes as the square root of their 
product, as in the present example, where 4 X 9 = 36, of which the square root is 6. 
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Leonardo of Pisa, also called Fibonacci, who described it in 1202 in con
nection with a number game based on the propagation of rabbits.9 The 
quotient of the division of two successive numbers of a Fibonacci series 
beyond the seventh pair is always a golden mean. Such series are the 
basis of many natural patterns and can be seen in the petals of a daisy or 
the spirals of a pine cone. 

The golden mean or section, in which the ratio of the whole to the 
larger part is the same as the ratio of the larger part to the smaller, was 
first described in Luca Pacioli's Divina proportioneof 1509 as an extension 
of the Vitruvian idea of the perfection of the human body. 10 In Pacioli 's 
view it was "essential, singular, ineffable, miraculous, indescribable, ines
timable, supreme, most excellent, most incomprehensible, most noble," 
and was declared, somewhat metaphysically, to be "the source from 
which all of the measures and denominations of the human body derive, 
and where is to be found all and every ratio and proportion by which 
God reveals the innermost secrets of nature." "After having considered 
the flawless arrangement of the human body," he wrote, "the ancients 
proportioned all their work in accordance with it. For in this vessel they 
found two main figures without which it is impossible to achieve any
thing, namely the perfect circle and the square." 11 

Affirmation of this is found in the Vitruvian figure of Leonardo da 
Vinci reproduced as fig. 4. To this figure, one of the symmetrical bodies 
that Leonardo drew for Pacioli's book, I have added (in the top and 
right margins) an analysis of its proportional measurements. It is note
worthy that the horizontal proportions are irrational, that is, based on 
successive golden means, while the vertical ones are all rational propor
tions based on the numbers 1 to 4. For example, on the horizontal plane 

9. Leonardo of Pisa (Fibonacci), Incipit fiber a.baci comjJositus a leonardo ji.lio bonacij 
Pisa.no (1202). Edited from the Codex Magliabechiano, C. I , 2616 by Baldasarre 
Boncompagni as volume I of Scritti di Leonardo Pisa.no (Rome, 1857). 

IO. Marcus Vitruvius Pollio was a Roman architect of the first century B.C. whose 
celebrated treatise, De architectura (written after c. 27 B.C.; eel. and trans. by Frank 
Grange r as Vitruvius on Architecture [New York, G. P. Putnam's Sons, I 931]), served as 
the main autho rity on ancient classical architecture in the Renaissance, Baroque , and 
Neoclassical periods. In his third book, "On Temples," Vitruvius writes about the pro
portions of the human figure and their relationship to the proportions of temples; cf. 
Wittkower, 14. 

11. Luca Pacioli, De divina j1roportione, eel. Constantin Winterberg in Quellenschriften 
fiir Kunstgeschichte und Kunsttechnik des Mittelalters und der Neuzeit (Vienna, 1889; reprint 
Hildesheim: Georg Olms, 1974), 129. Texts quoted in this article have been translated 
by the p1·esent author unless otherwise indicated. 
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FIGURE 4. The Vitruvian figure of Leonardo da Vinci. Courtesy Academia da 
Vinci, Milan. 
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a series of golden sections are found between the hand and the forearm; 
between these together and the upper arm; between the hand, forearm , 
and upper arm and the torso; and between all of the preceding compo
nents and the entire arm span. In a vertical direction there is a profusion 
of duplex (2:1), sesquialtera (3:2), and sesquiquarta ( 4:3) proportions 
between the head and torso (3:2), torso and thigh (4:3), thigh and up
per calf (2:1), and lower calf and foot (4:3). 12 

Oboes and Proportions 

Before describing some of the many occurrences of these proportions 
on eighteenth-century oboes, I must emphasize that their pervasiveness 
in our physical world makes it difficult to make strong assertions regard
ing how consciously they were apphed to these instruments. Much of 
what our measurements derive as proportional may have been, in the 
eye of the maker, simply good design, a matter of adjusting the propor
tions so that they looked right. "This beautiful manner," according to the 
sixteenth-century writer Daniele Barbaro, "is called Eurythmia ( or har
mony), the mother of grace and delight in music as well as in architec
ture."1 3 

The proportions most frequently found in the design of oboes are 2: 1, 
3:2, and 4:3, together with the harmonic mean and the golden mean . All 
are based on rational or whole integers and are of Pythagorean origin 
except the golden mean, which is irrationaJI 4 and of later origin. 
Because of their relationship to the musical intervals of the octave (2:1), 
fourth (4:3), and fifth (3:2), these rational proportions, together with 
the irrational golden mean, were considered to be expressions of univer
sal harmony, a concept often depicted in the form of a monochord, as il
lustrated in Robert Fludd's Utriusque cosmi historia of 1617 (fig. 5). 15 

The acoustical and decorative design of oboes may be analyzed in a 
number of ways. Besides the proportional systems which are the thrust of 
this discussion, there are also some empirical arithmetic plans that can 

12. A 5:4 proportion exists, however, between the length of the hand and foot. 
13. Danielle Barbaro, I dieci libri dell' Architettura di M. Vitruvio (Venice, 1556), 24, 

ad Vitruvium I, ii, 3. 
14. Irrational numbers are not expressible as integers or as the quotients of two in

tegers, for example the square root of 2, which equals 1.4142. 
15. Robert Fludd, Utriusque cosmi, majoris scilicet et minoris, metaphysica, physica, atque 

technica historia (Oppenhemii, 1617) , 163. 
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FrGURE 5. Universal harmony exemplified by a monochorcl. Robert Fludd, 

Utriusquecosmi ... historia (1617), 163. 
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be used to lay out the instrument. When historic oboes are analyzed ac

cording to any of these schemes, many variations result, even among in

struments by the same maker. Changes in decorative features, acoustical 

modifications, and manufacturing mistakes are only a few of the adjust

men ts that contribute to the differences, and as a result it is often not 

possible to discern the original concept. With this in mind, let us investi

gate to what extent proportions and arithmetical plans appear to be an 

active part of the design process. 

Empirical Analytical Systems 

Herbert Heyde, in his book 1\tlusikinstrumentenbau, devoted numerous 

pages to the proportions of string and keyboard instruments, 16 but in 

the end he faced the same dilemma encountered by Coates or anyone 

else: deciding whether the proportions were knowingly applied, or were 

simply the consequence of empirical procedures. For contemporary 

string and keyboard instruments practical instructions and designs 

abound, but in the case of oboes, not only are there no proportional de

signs, there are also no practical instructions for laying out the tone 

holes and decorative elements. To enable his discussion of oboes Heyde 

presents a practical scheme of his own devising that was derived from the 

instruments themselves. 17 

Heyde's method determines the placement of the division between 

the top and center joints by measuring from the top a distance equal to 

two-fifths of the total length of the instrument. Centered over this point 

is a segment equal to one-third of the total length . The extremes of this 

segment, which is divided into six parts, show the placement of the first 

and sixth holes, an d its other points of division locate the second 

through fifth holes. 18 Holes seven to nine are laid out according to 

16. Herbert H eyde, Musikinstrumenlenba.u 15.-19. Jahrhundert: Kunst , Handwerk, 

Entwwf (Le ipzig: VEB Deutscher Verlag for Musik, 1986), 88-172. 
17. Heyde, 179. 
18. Heyde, 179, cites a numbe r of ways of setting the hol es. I-le mentions a Richters 

oboe with schalmei antecedents (Vienna, Sammlung alter Musikinstrumenten 653), 

which has the top hole at one-quarter of the total length-though the three-keyed 

Fornari oboe (Venice, Fonclazione Querini Stampali 400-2) works better at this interval 

than does th e Richters. His plan of one-third total length for the span of the holes is 

quite accurate, but the placement of the mid-point of this segment a t a distance two

fifths of the length from the top usually situates it in the middle of the tenon rather 
than at the mid-;joint as he suggests. 
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prime numbers (that is, a number divisible only by itself or one, such as 
1, 2, 3, 5, 7, 11, 13 ... ), or a Fibonacci series. 

Figure 6 uses a drawing of an oboe by Engelbert Terton to demon
strate this system of division into five parts, and the placement of a one
third-length segment for establishing the location of the first six finger
holes. Holes 7 and 8, those covered by the two keys, can be considered to 
be positioned according to either a prime or Fibonacci series, since their 
relationship involves only the numbers 2, 3, and 5, which are common to 
both series. The distance between holes 6 and 7 is one-and-a-half times 
that of the distance between holes 5 and 6 ( that is, if the latter distance is 
considered as being 2 units, then the former will equal 3) . Similarly, the 
distance between holes 6 and 8 stands in a 5:2 ratio to the distance be
tween holes 5 and 6. The placement of hole 9 at a distance of 4. 75 units 
from hole 6, however, does not correspond to anything in either the 
prime or Fibonacci series. 

A simpler scheme formulated by the present author, while also lack
ing a recorded historical precedent, can be used to directly place not 
only seven of the nine holes, but many of the other exterior features as 
well. By dividing the total length of the oboe into eighteen parts, as illus
trated at the right side of fig. 6, all of the holes except 7 and 8 can be 
sited, as can the finial-baluster juncture, the bottom of the top column 
beads, the upper extent of both key rings, and the top of the center col
umn base.19 Holes 7 and 8, however, must be placed according to the sys
tem previously described. 

Analyses Using Proportions 

To begin with, it must be conceded that not all of the available pro
portional schemes were used by architects or instrument makers. Some 
did not produce consonant musical intervals, and hence were rejected 
by the architects. Other proportions, including some of those used by 
string instrument makers, for example, were not applicable to oboe de
sign, because the oboe did not have the same kind of broad surface ar
eas that were part of the resonant bodies of string instruments. Figure 7 
illustrates some of the simpler lateral relationships existing on the belly 

19. Appendix A presents a diagram detailing the nomencla ture used in connection 
with the parts of the oboe. Note also that six of the eighteen parts equal the one-third 
segment used by Heyde to establish the placement of holes 1-6. 
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FIGURE 6. Empirical demonstration of the placement of oboe tone holes. 
Engelbert Tenon, c. 1700 (Washington, D.C., Smithsonian Institution 208,185). 
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FIGURE 7. Proportional analysis of the belly of a viola by Giovanni Paolo Maggini 
(c . 1610). Kevin Coates, Geometry, Proportion and the Art of Lutherie (Oxford: 
Clarendon Press, 1985) , fig. 66. 

of a viola (c. 1610) by Giovanni Paolo Maggini, as analyzed by Coates.20 

The germane parts of this detailed analysis are that mm ':xx 1, pp:mm ', and 

ad:ab use the ratios 3:2, 5:4, and 5:3 respectively. Only the first of these 
(3:2) was found on early oboes or used in architecture. The other two ra
tios pointed out by Coates (5:4 and 5:3) produce intervals ofajust major 
third and a just minor tenth, which were not part of the Greek tradition 
upon which Renaissance architecture was based. 

There are no instances of irrational proportions applied to the dia
metric ( or lateral) dimensions of the oboe. The only rational proportion 

20. Coates, 82, fig. 66. 



108 JOURNAL OF THE AMERICAN MUSICAL INSTRUMENT SOCIETY 

that has been found with any frequency in conjunction with diametric 
measurements is the harmonic mean that occurs between the baluster 
joints on some 44% of earlier eighteenth-century Dutch oboes by such 
makers as Willem Beukers, Hendrik and Frederik Richters, and Terton . 
This mean, occurring at the bell baluster, is established by using the di
ameters of the bell rim and the finial baluster as the extremes (fig. 8) . 

As one might assume from the proportional nature of pitches, vertical 
measurements tell a different story. Figure 9 illustrates the various points 
where golden sections occur on a late Classical oboe by William Mil
house. Compared with earlier instruments, oboes from the end of the 
eighteenth century have a greater number of observed golden sections. 
Consider the difference in the frequency of irrational proportions on 
the late oboe by Thomas Cahusac and the early instrument of Hendrik 
Richters depicted in fig. 10. Since these relationships are consistent on 
the individual instruments of these makers, we have some indication that 
much of the work was the result of conscious design. For example, on 
the early oboes shown in fig. l la, a golden mean established between 
the apogee (the apex, or highest point of the curve) of the baluster and 
the top of the finial lies at the center of the torus (a semicircular or ellip
tical projection, often in combination with other shapes) 21 of the lower 
finial beads. Further, a duplex (2: 1) proportion established between 
these same two points consistently intersects either the top or the astra
gal (also a semicircular projection, usually smaller in relation to a torus) 
of the lower finial beads. The same proportions established from the 
same points on the later oboes in fig . 11 b are, however, more random, 
intersecting the finial either in the center of the torus and the astragal as 
above, or just below and above the torus. 

Rational proportions are found on all oboes of the eighteenth cen
tury, but often seem to occur only incidentally, that is, as a consequence 
of some other measurement. On modular instruments (those whose fea
tures are placed according to a specific unit of measure), like the Beu
kers oboe seen in fig. 12a, with many coincidences between the points of 
division and the design features, such proportions abound. Yet there are 
other instances where all of the proportions are integral to the design. 
Of particular note are the keys on the oboes of Hendrik and Frederik 
Richters, which exhibit numerous simple proportions (fig. 12b). 

21. See Appendix B, which contains a list, with definitions and profiles, of molding 
shapes encountered on eighteenth-century oboes. In addition, for the convenience of 
the reader, the initial mention of each molding shape is printed in boldface type in the 
main text. 
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FIGURE 8. Harmonic mean applied to 
an oboe (0 = diameter). Engelbert 
Tenon, c. 1700 (Washington, D.C., 
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FIGURE 9. Occurrences of the golden 
mean on a late Classical oboe. William 
Milhouse, 1789-1810 (Edinburgh, 
Collection of Historical Musical 
Instruments 2003). 
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FIGURE IO. Irrational proportions occurring on early and late eighteenth-cen
tury oboes by Hendrik Richters, c. l 7i0-l 727 (Boston, Marlowe Sigal, ex-Piguet 

[left]), and Thomas Cahusac Jr. , c. 1780-1810 (Oberlin , James Caldwell 
[right]) . 
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FIGURE Ila. Incidence of the golden mean on early eighteenth-century oboe 
balusters. 
a. Willem Beukers (The Hague, Gemeentemuseum Ea 10-x-52). 
b. Richard Haka (Stockholm, Musikhistorisk Museet MM155). 
c. Nicolas Hotteterre (Brussels, Musee Instrumental du Conservatoire 2320). 
d. Engelbert Terton (Washington, D.C. , Smithsonian Institution 208,185). 
e. Hendrik Richters (Boston, Marlowe Si gal [ ex Piguet]) . 

a b C d e 

FIGURE 11 b . Incidence of the golden mean on late eighteenth-century oboe 
balusters. 
a. Thomas Cahusac (Oberlin,James Caldwell) . 
b. Thomas Collier (David Jones, "A Three-keyed oboe by Thomas Collier," The 
Galpin Society Journal 31 [1978), 39). 
c. Christoph Delusse (Oxford, Bate Collection 20). 
d . Andrea Fornari (Bern, Historisches Museum 36776). 
e . William Milhouse (Edinburgh, Collection of Historical Musical Instruments 
2003) . 
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FIGURE 12a. Appearances of rational proportions on an oboe by Willem Beukers 
(The Hague, Gemeentemuseum Ea 10-x-52). 
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i:h = 3:2 
i:m=4:3 
j :k = 1: 1 
j:l = 2:1 
k:l = 2:1 
n:h = 5:4 

FIGURE 12b. Appearances of rational proportions on oboe keys by Hendrik 
Richters (Washington, D.C., Library of Congress, Miller Collection 158 [left]; 
Vermillion, Shrine to Music Museum 4547 [right]). 

Architectural Motives 

Andrea Palladio, whose 1570 prescription for beauty was cited at the 
beginning of this article, was the last of a long line of Renaissance archi
tects22 through whose works the Vitruvian hierarchy of architectural val
ues was transmitted to the seventeenth and eighteenth centuries. The 
most influential writers of this later era were Scamozzi, Perrault, Gibbs, 
and Chambers,23 whose individual works, or similar works of others, 
were known during the period to students and scholars interested in per
petuating the beauty of classical design. 

From simple moldings to complex proportions, oboes abound with 
references to furniture and architecture. There are at least twenty-three 
molding shapes that occur as part of oboe ornamentation (see Appendix 
B). These shapes range from simple beads, or small rounded moldings 
(figs. 13a, b), to complex clusters that are sometimes made up of as 
many as six individual shapes (fig. 13c). Although some motives are 

22. Other important late Renaissance architects who, with Palladio, helped to 
shape the future concept of classical design were Sebastiano Serlio, The Five Books of 
Architecture (Venice, 1566; English trans. London, 1611; facs. reprint New York: Dover, 
1982) and Giacomo da Vignola, R.egole delle cinque ordini d 'architettura (Rome, 1562). 

23. Vincenzo Scamozzi, L'idea dell'archittetura universale (Venice, 1615); Claude 
Perrault, Ordonnace des cinq especes de co/ones (Paris, 1683); James Gibbs, Rules for 
Drawing the Several Parts of Architecture (London , 1732); and Sir William Chambers, A 
Treatise on Civil Architecture (London, 1759). 
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FIGURE 13. Styles of turned beads. 
a. Simple bead. Martin Lot (Vermillion, Shrine to Music 
Museum 4546). 
b . Beads with astragal. William Milhouse (Oxford, Bate 
Collection 203). 
c. Finial and top column beading. Thomas Collier (New York, 
Metropolitan Museum of Art 1981.216). 

shared among the many makers , almost every maker used some sort of 
individualized combination that makes his work identifiably different 
from that of his peers. 24 

The top of the finial, for example, provides some interesting and var
ied combinations of what is often regarded as a common theme. Figure 
14a shows a Milhouse finial that consists of a nose (a large bead applied 
at an edge) and two fillets (narrow flat members often used to separate 
adjacent moldings). The second example (fig. 14b), from an oboe by 
Thomas Stanesby Sr., uses the nose in combination with an ovolo (a cir
cular or elliptical quarter round), while the third, from an instrument by 
his son (fig. 14c), combines a fillet with a scotia (a concave elliptical 
quarter) below the nose. Another common grouping is a simple bolec
tion made up of an astragal bounded by two beads, a combination which 

24. A suggested analytical technique fo,· identifying individualized molding pat
terns may be found in the third paragraph of Appendix B. This simple approach allows 
complex moldings to be assigned discrete alphabetic codes, which can then be classi
fied into groups and used to compare consistency of design and manufacture. Given a 
large enough database, it may also be useful for identifying anonymous instruments by 
comparing their molding patte rns with those of known oboes. 
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a b C 

FIGURE 14. Variants in finial design. 
a. Nose and two fillets . William Milhouse (Oxford, Bate Collection 203). 
b. Nose with ovolo. Thomas Stanesby Sr. (London, Horniman Museum 14-5-
47 /277). 
c. Nose with fillet and scotia. Thomas Stanesby Jr. (London, Horniman Museum 
1969.683). 

appears universally as the upper waist beads on oboes of the Classical pe
riod, for example on the bell of the instrument by Johann Friedrich 
Englehard depicted in fig. 15a. On earlier oboes this feature is always 
balanced with a lower set of beads that frequently have more elements, 
as does the bell of Johann Heinrich Eichentopf's oboe shown in fig. 15b, 
which also has an added fillet at the bottom of the group. 

It is true, of course, that these moldings are as much the property of 
the furniture maker and the wood turner as they are of the oboe maker. 
Indeed, many woodwind makers began their work as turners before tak
ing up musical instruments.25 However,just as the use of proportions dis
cussed above exceeds that commonly encountered in the manufacture 
of furniture, the use of molding elements often exceeds the scope of 
eighteenth-century furniture decoration. 

In fact, resonances of architectural features turn up in oboes as well as 
in furniture. Of the following examples, some are prominent on oboes 
throughout the century, while others demonstrate a shift to Classical 

25. The patriarchs of both the Richters and Milhouse families began their work 
as wood turners. Frederik Richters learned the trade in his home village of Laar in 
Germany's Miinsterland befo,·e his emigration to the Netherlands in 1677, and 
Richard Milhouse worked as a turner in Newark-on-Trent, England, in the mid
eighteenth century. Biographical details on the Richters family may be found in Cecil 
Adkins, "Oboes Beyond Compare: The Instruments of Hendrik and Fredrik Richters," 
thisJouRNAL 16 (1990), 42-117, esp. 107-15. For information on the Milhouse family, 
see the author's "William Mi lhouse and the English Classical Oboe," ibid. 22 ( 1996) : 
42-88. 
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FIGURE 15. Bolection moldings . 
a. Astragal with beads.Johann Friedrich Engelhard (Leipzig, Musikinstrumenten
museum der Universitat 13230). 
b. Astragal with beads and fillet. Johann Heinrich Eichentopf (Halle, Handel
Haus MS-420). 

ideals from those of the earlier Baroque style. Besides those that occur 
commonly throughout the period, such as the Attic base and the separa

tion of molding shapes with fillets, one can find many examples that ap
pear only late in the century, including symmetry in molding clusters, 
the hawksbeak ( an asymmetrical convex/ concave shape), and classically

designed balusters. 
One of the more conscious architectural adaptations is the Attic base, 

a figure constructed of two tori with an intervening cove (a semic_ircular 
groove) (fig. 16a). This feature, which is used on oboes as the base of the 
middle joint, occurs in many modifications, with some of the most obvi
ous ones appearing later in the eighteenth century (fig. 16b). An inter
esting adaptation on a Jan Steenbergen oboe from the first half of the 
century has only an ovolo (or quarter round) at the base of the middle 
joint, but it combines with the torus on the bell baluster to make a con
vincing Attic base (fig. 16c, 1 & 2). On the subject of bases, it should 
be pointed out that not infrequently the crown of the middle baluster 
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FIGURE 16. Attic base. 
a. Classical forms of the Attic base. 
b. An Attic base at the bottom of the middle oboe joint. Thomas Collier (New 
York, Metropolitan Museum of Art 1981.216). 

becomes the base of the top joint when the two parts are joined (fig. 
16d, 1 & 2). 

As was seen on the lower waist beads of the Eichentopf oboe in fig. 
15b, fillets were used consistently throughout the century to set off mold
ings. Early in the period these were often paired in an asymmetrical 
form (fig. 17a), but more compact, symmetrical molding clusters were 
evident later on, especially in the last quarter of the century. The top
column bead area just below the baluster was a favorite place for this 
kind of treatment (fig. 17b). 

A Greek molding virtually absent in the Renaissance was the hawks
beak. This shape, related to the ogee or cyma but with a convex upper 
and concave lower surface (fig. 18a), was reintroduced by classicists26 

26. Robert Chitham, The Classical Orders of Architecture (New York: Rizzoli, 1985), 
152. 
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2 

FIGURE 16, continued. 
c I. A two-part Attic base at the middle joint. 
c2 . The Attic base seated on the bell baluster. Jan Steenbergen (Amsterdam, 
Han de Vries). 

2 

FIGURE 16, continued. 
dl. Crown of the middle joint as an Attic base of the top joint. 
d2 . Top joint joined to the middle joint, form ing a column with an Attic base. 
Button & Purday (Vermillion, Shrine to Music Museum 1317) . 
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Fie URE 17. Use of fillets to set off decorations. 
a. Non-symmetrical top column beading with fillets. Johann Wolfgang Kenigs
berger (Boston, Museum of Fine Arts 17.1908). 
b. Top-column beads with symmetrical fillets . Button & Purday (Vermillion, 
Shrine to Music Museum 1317). 

toward the end of the eighteenth century, when it was frequently seen on 
English oboes (fig. 18b). After the turn of the century it becomes even 
more extreme, as on the Andrea Fornari oboe illustrated in fig. 18c. 

Oboe baluster design, often likened to an inverted Greek vase or to 
the balusters used in Classical balustrade panels (see fig. 19), tends to 
stricter classical design at the end of the century. Earlier oboes empha
size the balance between the finial and the baluster. Compare, for exam
ple, the early and late oboes in figs. I la and 11 b, noting that the finials 
of those in I la tend to encompass about forty percent of the overall 
finial-baluster length, while those in 11 b encompass only twenty-five per
cent of the combined length. Classical requirements for baluster design 
(fig. 20) are fulfilled on the oboes by the late eighteenth-century makers 
William Milhouse and Thomas Collier shown in figs. 21 and 13c. (In fig. 
20 the balustrade is shown inverted in order to make the representation 
of the oboe easier to comprehend.) 



FIGURE 18. Hawksbeak. 
a. Hawksbeak as an architectural molding. 
b. Hawksbeak as a center-:joint baluster. Button & Purday (Vermillion, Shrine to 
Music Museum 1317) . 
c. Hawksbeak as a finial. Andrea Fornari (Leipzig, Musikinstrumentenmuseum 
der Universitat 1327). 
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FIGURE 19. Baluster design. Robert Chitham, The Classical Orders of Architecture 
(New York: Rizzoli, 1985), fig. 2. 

Architectural Orders 

The commonness of architectural moldings in oboe design leads one 
to ask, first, why was the oboe the only instrument to regularly use such a 
superfluity of non-functional decorative features,27 and, second, how far 
were oboe makers willing to extend their ideas in pursuit of the classical 
forms of which these moldings are part, and that are so evident later in 
the century in the balusters of Milhouse and Collier? If the concept of 

27. Such ornaments also occur on recorders, bassoons, and clarinets, though 
nowhere so extensively as on the oboe. Those on the clarinet have a more functional 
origin, as may be seen in the key rings that parallel the oboe's top column beads on 
the clarinets of J acob Denner and P. Paur (Rocko Baur), or the lower baluster used 
by Denne r that more often resembles the fontanelle common in an earlier period. 
Non-functional ornamentation can be seen on clarinets (particularly some by G.-A. 
Rottenburgh) that are in the style of French oboes (Jean-Jacques Rippert, Charles 
Bizey, the Lot family, and Jean [?] Deschamps) of the third quarter of the eighteenth 
century. Among other instruments the harp is the best example of adaptation of classi
cal elements, but its column design is actually of twentieth-century origin. 
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FIGURE 20. A classically-drawn oboe baluster by William Milhouse (Edinburgh, 
Collection of Historical Musical Instruments 2003), compared with a baluster 
adapted from Chitham, The Classical Orders of Architecture, Plate 40. 
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FIGURE 21. A classically-designed oboe baluster by William Milhouse (Boston, 
Museum of Fine Arts 17-1909). 

oboe design were grounded on a larger architectural form, then it might 
be said that the decorations fulfilled an aesthetic function as part of the 
whole, and, of course, that larger form would have to have been the col
umn. To pose a parallel between the column and the eighteenth-century 
oboe may take a flight of fancy, but juxtaposition of the two produces 
some striking similarities. 

The technique of laying out a column in the Greek fashion was cov
ered in all post-Renaissance architectural manuals, and though each au
thor may have varied the details according to his own fashion, the basic 
scheme remained unchanged. All calculations involved in designing a 
column are based on the diameter of the base of the shaft. If this re
mains constant, the shafts of the successive orders become longer, as il
lustrated in fig. 22, but if the length is held constant, then the diameters 
of the shafts decrease. Further, in architectural use columns were often 
superimposed, with the superior order always highest, thus placing a 
taller and slimmer column above a shorter and broader one. Just as the 
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FIGURE 22. The classical orders of columns. Chitham , The Classical Orders of 
Architecture, Plate 9. 

order of imposition (the placing of one column above another) pro
gressed from the archaic Classical period (before 500 BC), with the Ionic 
placed above the simpler Doric, to the Hellenistic ( c. 500-349 BC), with 
its placement of the Corinthian above the Ionic , there is a progression in 
the shape of the oboe, which became steadily slimmer from the begin
ning to the end of the eighteenth century. 

Figure 22 illustrates the principle of fixed diameter in which the 
columns increase in length, while fig. 23 shows columns of fixed length, 
with the later shafts decreasing in diameter. It is of utmost interest here 
to compare the superimposed columns in the latter illustration to the 
drawings of oboe segments that have been placed within the architec
tural frame. On the left in fig. 23 is the outline of a Terton oboe (c. 

1700) whose two upper joints approximate the diameters and lengths of 
the superimposed Tuscan-Ionic shafts, while on the right is a Milhouse 
instrument (c. 1790-1815) matched to an Ionic-Corinthian pair. One 
would normally assume that the external narrowing observed in the lat
ter oboe occurred primarily as a response to the increasingly narrower 
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FIGURE 23. Proportions of superimposed Tuscan-Ionic and Ionic-Corinthian 
columns (after Chitham, The Classical Orders of Architecture, Plate 41), compared 
to those of the top and middle joints of oboes by Terton (Washington, D.C., 
Smithsonian Institution 208,185 [left)) and Milhouse (Edinburgh, Collection of 
Historical Musical Instruments 2003 [right]) . 
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bores of the later eighteenth century, but it is intriguing to observe that 
this trend also reflects the increased interest in classicism during this era. 
Reinforcement of the idea of classical patterning is also found in the ear
lier discussion of the baluster design of Collier and Milhouse. 

In closing I would like to point out one final analogy between the 
arrangements of a column and an eighteenth-century oboe. Figure 24 
compares an early eighteenth-century oboe by Richard Haka to a super
imposed Tuscan-Ionic structure. Here the central and superior entabla
tures28 of the architecture match the placement of the middle-:ioint 
baluster and the finial, and the bell of the oboe fulfills the function of 
the pediment of the column. (It is also curious how the shawm-derived 
pirouette mimics the cornice at the top of the edifice .) It is not likely, 
however, that eighteenth-century oboe makers strove to slavishly copy 
the architectural column in their oboes, but rather that the interest in 
architecture that had been stimufated and passed on by the late 
Renaissance architects was heightened by the Classical Revival at the end 
of the eighteenth century. Perhaps more to the point is that the makers 
were using common features of their everyday world, part of their formal 
education when they were privileged to have one. Whether it was an 
oboe or a column, an object provided intellectual as well asesthetic satis
faction when all its parts were pleasingly in order. 

28. In classical architecture, an entablature is the decorated wall resting upon the 
capitals of the columns and supporting the pediment or roof plate (according to its 
position on the front or the flank of the building), or the pediments of a range of su
perimposed columns. It is analogous to the lintel in a post and lintel construction. 
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FIGURE 24. Superimposed Tuscan-Ionic columns with base and entablatures, 
compared to a complete oboe by Haka (Stockholm, Musikhistorisk Museet 
MM155) . 
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APPENDIX A 

Oboe nomenclature 

------ Upper finial beads 

--Finial 
-Finial cove 
- Lower finial beads 

---Baluster 

Hole ---Top column beads 
Top joint Numbers 

l-

2-

J- § 
-Center socket beads 

Center baluster 
---Center column beads 

4- © 

5- 0 

Middle joint 6- 0 

7-
, .. -Key channel 
--Lower key ring 

8- -------- Center base shoulder 

--Bell socket beads 

Bell baluster 
9-

Lower joint 

--Flare beads 
--Rim 

l________ Lip 

1. This scheme of oboe nomenclature was developed in 1990 by Bruce Haynes and 
Cec il Ad kins. 
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APPENDIXB 

Molding Shapes 
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This list of moldings, accompanied by simple descriptions and pro
files, represents those encountered in the manufacture of eighteenth
century oboes. They have been observed as predominant forms on other 
early woodwinds as well. All are listed here in their simplest outlines, but 
when encountered on an instrument they are often combined into a 
structure consisting of a number of simpler moldings placed adjacent to 
one another. 

Molding shapes are simple or complex, depending upon whether 
they consist of a single gesture or several. Simple moldings can be 
convex (projecting), concave (recessed), or plane (flat), while complex 
moldings will be a combination of two or more of these simple figures . 
Moldings with curved sections based on a circle derive from the Roman 
practice, while those elliptical in contour are of Greek origin. Several of 
the moldings listed here (trigal, trogee, and reverse trogee) are newly 
designated and are based on combinations of angles and flat planes 
often observed in oboe profiles; the trigal is included with the convex 
(curved) figures because it is a projecting molding. Determination of the 
components of complex structures is aided by the common use of fillets 
as separators. 

Configurations of oboe moldings range from single beads to groups 
made up of as many as six individual shapes. Although there were many 
motives shared by oboe makers, each one usually used a distinctive and 
identifiable combination. The alphabetic characters at the right side of 
the list are designations used to identify molding clusters in order to 
search for distinct groupings. For example, a common combination 
consisting of a bead, an astragal, and a bead is designated BAB. Slightly 
more complex arrangements can be seen in the finials shown in fig. 14, 
which are designated, downwards, a: NFF, b: NO, c: NFS; and in fig. 17a: 
FYACYTCAYF. In the last example the upper fillet and splay are less dif
ferentiated at the lower repetition and also might be read as a quirked 
splay, which would be designated as Y9, where the superscript is used to 
designate a figure imposed on another. 

General Terms 

Arris The sharp edge or angle created by the meeting of two sur-
faces. 
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Bead Often used as a general designation for semispherical pro-
jecting figures of the smaller type, as well as for a specific 

profile. 
Bolection A variable projecting profile made up of several simple fig

ures . While never a unique pattern, it is a useful term for 
descriptive purposes. The version shown in the molding 
examples is composed of a bead, an astragal, and another 
bead. 

Chamfer The surface formed by cutting away the arris or angle formed 
by two surfaces. 

Groove A generic term for recessed, concave moldings. 

Convex (Projecting) 
Ovolo Convex step up or down, round or elliptical; on oboes 

Astragal 
Bead 
Torus 

Trigal 
Nose 
Reeds 

most often a quarter round." 
Semicircular projection above the surface of a flat plane. 
Small rounded molding, usually projecting.b 
Semicircular (or elliptical) projection, often 

with quirk or cove and square fillet. 
Triangular projection. 
A bead, often large, applied at the edge. 
A series of parallel beads ( often vertical). 

Concave (Recessed) 
Cove 
Vein 
Quirk 
Cavetto 
Scotia 
Conge 
Flutes 

Semicircular groove. 
V-shaped groove. 
Small groove or channel. 
Concave semicircular quarter.c 
Concave elliptical quarter. 
Concave quarter extending into a fascia or fillet. 
A se1ies of parallel coves ( either horizontal or vertical). 

K 
A 
B 

T 
u 
N 
R 

C 
V 

Q 
D 
s 
E 
H 

a. Some ovolo de finitions require the addition of steps or fillets at the beginning 
and encl of the figure. 

b. Differentiation between beads, astragals, and tori on oboes is often dependent 
upon their relative size and use. Architecturally, astragals project above the surface and 
beads are defined from the plane surface by a quirk or other groove. 

c. Designations of cavetto, cove, and scotia are often blurred by indistinct and over
lapping definitions. Cavetto and scotia are most often interpreted as 90° concaves, 
while the cove is semicircular, though all three are frequently interchanged. In tradi
tional usage a scotia is said to be an elliptical hollow, named for the shadow it casts 
when used as a sunken molding at the base of a column . 



Plane (Flat) 
Fillet 

Fascia 
Splay 

PROPORTIONS AND ARCHITECTURAL MOTIVES 

A narrow flat member. In classical use a fillet often 
separates adjacent moldings. 

A broad fillet. 
A flared fascia . 

Complex (Composite) 
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F 
G 
y 

Ogee Convex above, concave below (cyma recta). 0 
Reverse ogee Concave above, convex below ( cyma revers a). P 
Trogee Straight slopes with recessed angle; ogee shape 

with lower part of the figure projecting.d X 
Reverse trogee Straight slopes with projecting angle, reverse ogee 

shape with upper part of the figure projecting. J 
Beak Asymetrical convex/concave shape with convex 

plane on upper surface (hawksbeak) . W 
Trough Asymetrical concave/ convex figure with concave 

plane on upper surface (reverse beak, reverse 
hawksbeak). z 

d. The trogee, like the ogee, may be reversed so that the angle is recessed rather 
than projecting. While this form might be considered a splay, because of its straight 
surface, its second surface is always flat , as in a fascia or broad fillet, whereas the splay 
is a single surface and may be finished by any other figure. 
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MOLDING SHAPES 
CONCAVE PLANES 

cove ~ fillet 

vein 
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r- scotia 
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